# Matrix Calculator in C

0 252

A **matrix calculator in C** allows you to perform various operations on **matrices efficiently**, such as **addition**, **subtraction**, **multiplication**, and **more**.

These operations are essential in** various fields**, i**ncluding mathematics**, **engineering**, **computer graphics**, and **data science**.

By implementing a matrix calculator in C, you can **manipulate matrices** of different sizes and dimensions, making complex computations easier and faster.

**Syntax of matrix calculator in C:**

#include<stdio.h>#include<stdlib.h> void matrixAddition(int rows, int cols, int A[rows][cols], int B[rows][cols], int C[rows][cols]); void matrixSubtraction(int rows, int cols, int A[rows][cols], int B[rows][cols], int C[rows][cols]); void matrixMultiplication(int m, int n, int p, int A[m][n], int B[n][p], int C[m][p]); void matrixTranspose(int rows, int cols, int A[rows][cols], int B[cols][rows]); int matrixDeterminant(int n, int mat[n][n]); void matrixInverse(int n, int mat[n][n], float inv[n][n]); void printMatrix(int rows, int cols, int mat[rows][cols]); int main() { // Your main function goes here return 0; } // Function declarations

**Parameters:
**

** rows:** The **number of rows **in the matrix.

** cols: **The **number of columns** in the matrix.

** m, n, p: **Dimensions of the **matrices** for multiplication.

** A, B, C: Matrices **involved in the operations.

** mat: **The **matrix **for which the **determinant** or inverse is calculated.

** inv: **Th**e inverse** of the **matrix**.

Other **parameters **are** specific** to each function.

**Implementation:
**

The** matrix calculator functions** are** implemented **using appropriate algorithms for each operation.

** For example**, matrix addition involves adding corresponding elements of** two matrices**, matrix multiplication **employs the dot product** of rows and columns, and matrix inversion requires finding the determinant and adjoint of the matrix.

These** functions **are designed to** handle matrices** of different sizes and** dimensions efficiently**, ensuring accurate results for various applications.

Additionally, **error-handling mechanisms** are implemented to handle invalid inputs or edge cases, enhancing the robustness and reliability of the matrix calculator.

**Example:**

1**Matrix Addition
**

// program to matrix calculator in C #include<stdio.h>void matrixAddition(int rows, int colms, int A[rows][colms], int B[rows][colms], int C[rows][colms]) { for (int L = 0; L < rows; L++) { for (int M = 0; M < colms; M++) { C[L][M] = A[L][M] + B[L][M]; } } } int main() { int rows = 2, colms = 2; int A[2][2] = {{1, 2}, {3, 4}}; int B[2][2] = {{5, 6}, {7, 8}}; int C[2][2]; matrixAddition(rows, colms, A, B, C); printf("Result of matrix addition:\n"); for (int L = 0; L < rows; L++) { for (int M = 0; M < colms; M++) { printf("%d ", C[L][M]); } printf("\n"); } return 0; }

**Output:
**

Result of matrix addition: 6 8 10 12

2**Matrix Multiplication
**

// Program for Matrix Multiplication in C #include<stdio.h>void matrixMultiplication(int m, int n, int p, int A[m][n], int B[n][p], int C[m][p]) { for (int i = 0; i < m; i++) { for (int j = 0; j < p; j++) { C[i][j] = 0; for (int k = 0; k < n; k++) { C[i][j] += A[i][k] * B[k][j]; } } } } int main() { int m = 2, n = 2, p = 2; int A[2][2] = {{1, 2}, {3, 4}}; int B[2][2] = {{5, 6}, {7, 8}}; int C[2][2]; matrixMultiplication(m, n, p, A, B, C); printf("Result of matrix multiplication:\n"); for (int i = 0; i < m; i++) { for (int j = 0; j < p; j++) { printf("%d ", C[i][j]); } printf("\n"); } return 0; }

**Output:
**

Result of matrix multiplication: 19 22 43 50

3**Matrix Transposition:
**

// Program for matrix Transposition #include<stdio.h>void matrixTranspose(int rows, int cols, int A[rows][cols], int B[cols][rows]) { for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { B[j][i] = A[i][j]; } } } int main() { int rows = 2, cols = 3; int A[2][3] = {{1, 2, 3}, {4, 5, 6}}; int B[3][2]; matrixTranspose(rows, cols, A, B); printf("Result of matrix transposition:\n"); for (int i = 0; i < cols; i++) { for (int j = 0; j < rows; j++) { printf("%d ", B[i][j]); } printf("\n"); } return 0; }

**Output:
**

Result of matrix transposition: 1 4 2 5 3 6

Share:

## Comments

Waiting for your comments