Pandas Dataframe.sort_values()
×


Pandas Dataframe.sort_values()

175

Efficiently Sorting DataFrames with Pandas DataFrame.sort_values()

Sorting data is a fundamental operation in data analysis. In Python, the Pandas library provides the DataFrame.sort_values() method to sort data within a DataFrame. This method offers flexibility to sort by one or more columns, in ascending or descending order, and can handle missing values appropriately.

Understanding DataFrame.sort_values()

The sort_values() method sorts a DataFrame by one or more columns. The syntax is as follows:

DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)

Parameters:

  • by: The column(s) to sort by. Can be a single column name or a list of column names.
  • axis: The axis to sort along. Default is 0 (sort by rows).
  • ascending: Boolean or list of booleans. If True, sorts in ascending order; if False, sorts in descending order.
  • inplace: If True, performs the operation in place and returns None.
  • kind: The sorting algorithm to use. Options are 'quicksort', 'mergesort', and 'heapsort'.
  • na_position: 'first' or 'last'. Determines the position of NaN values. Default is 'last'.
  • ignore_index: If True, the resulting DataFrame will have a new integer index.
  • key: A function to apply to the columns before sorting. Useful for custom sorting logic.

Example 1: Sorting by a Single Column

Consider the following DataFrame:

import pandas as pd

data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, 30, 35, 40],
        'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']}

df = pd.DataFrame(data)

# Sort by Age in ascending order
df_sorted = df.sort_values(by='Age')
print(df_sorted)

This will output:

      Name  Age         City
0    Alice   25     New York
1      Bob   30  Los Angeles
2  Charlie   35      Chicago
3    David   40      Houston

Example 2: Sorting by Multiple Columns

To sort by multiple columns, pass a list of column names to the by parameter:

# Sort by City in ascending order, then by Age in descending order
df_sorted = df.sort_values(by=['City', 'Age'], ascending=[True, False])
print(df_sorted)

This will output:

      Name  Age         City
2  Charlie   35      Chicago
0    Alice   25     New York
3    David   40      Houston
1      Bob   30  Los Angeles

Handling Missing Values

By default, missing values (NaN) are placed at the end when sorting. To place them at the beginning, set the na_position parameter to 'first':

df_sorted = df.sort_values(by='Age', na_position='first')
print(df_sorted)

This will output:

      Name  Age         City
0    Alice   25     New York
1      Bob   30  Los Angeles
2  Charlie   35      Chicago
3    David   40      Houston

Sorting in Place

To sort the DataFrame in place without creating a new object, set the inplace parameter to True:

df.sort_values(by='Age', ascending=False, inplace=True)
print(df)

This will output:

      Name  Age         City
3    David   40      Houston
2  Charlie   35      Chicago
1      Bob   30  Los Angeles
0    Alice   25     New York

Conclusion

The DataFrame.sort_values() method is a powerful tool for ordering your data in Pandas. Whether you're sorting by a single column or multiple columns, handling missing values, or sorting in place, this method provides the flexibility you need for effective data analysis. Understanding and utilizing this method can significantly enhance your data manipulation capabilities in Pandas.



If you’re passionate about building a successful blogging website, check out this helpful guide at Coding Tag – How to Start a Successful Blog. It offers practical steps and expert tips to kickstart your blogging journey!

For dedicated UPSC exam preparation, we highly recommend visiting www.iasmania.com. It offers well-structured resources, current affairs, and subject-wise notes tailored specifically for aspirants. Start your journey today!


Best WordPress Hosting


Share:


Discount Coupons

Get a .COM for just $6.98

Secure Domain for a Mini Price



Leave a Reply


Comments
    Waiting for your comments

Coding Tag WhatsApp Chat